2,013 research outputs found

    Multi-Array 5G V2V Relative Positioning: Performance Bounds

    Full text link
    We study the performance bounds of vehicle-to-vehicle (V2V) relative positioning for vehicles with multiple antenna arrays. The Cram\'{e}r-Rao bound for the estimation of the relative position and the orientation of the Tx vehicle is derived, when angle of arrival (AOA) measurements with or without time-difference of arrival (TDOA) measurements are used. In addition, geometrically intuitive expressions for the corresponding Fisher information are provided. The derived bounds are numerically evaluated for different carrier frequencies, bandwidths and array configurations under different V2V scenarios, i.e. overtaking and platooning. The significance of the AOA and TDOA measurements for position estimation is investigated. The achievable positioning accuracy is then compared with the present requirements of the 3rd Generation Partnership Project (3GPP) 5G New Radio (NR) vehicle-to-everything (V2X) standardization

    Density waves and star formation in grand design spirals

    Full text link
    HII regions in the arms of spiral galaxies are indicators of recent star-forming processes. They may have been caused by the passage of the density wave or simply created by other means near the arms. The study of these regions may give us clues to clarifying the controversy over the existence of a triggering scenario, as proposed in the density wave theory. Using Hα\alpha direct imaging, we characterize the HII regions from a sample of three grand design galaxies: NGC5457, NGC628 and NGC6946. Broad band images in R and I were used to determine the position of the arms. The HII regions found to be associated with arms were selected for the study. The age and the star formation rate of these HII regions was obtained using measures on the Hα\alpha line. The distance between the current position of the selected HII regions and the position they would have if they had been created in the centre of the arm is calculated. A parameter, T, which measures whether a region was created in the arm or in the disc, is defined. With the help of the T parameter we determine that the majority of regions were formed some time after the passage of the density wave, with the regions located `behind the arm' (in the direction of the rotation of the galaxy) the zone they should have occupied had they been formed in the centre of the arm. The presence of the large number of regions created after the passage of the arm may be explained by the effect of the density wave, which helps to create the star-forming regions after its passage. There is clear evidence of triggering for NGC5457 and a co-rotation radius is proposed. A more modest triggering seems to exist for NGC628 and non significant evidence of triggering are found for NGC6946.Comment: 10 pages, 20 figures, accepted for publication in A&

    Macroscopic evidence of microscopic dynamics in the Fermi-Pasta-Ulam oscillator chain from nonlinear time series analysis

    Full text link
    The problem of detecting specific features of microscopic dynamics in the macroscopic behavior of a many-degrees-of-freedom system is investigated by analyzing the position and momentum time series of a heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results obtained in a previous work [M. Romero-Bastida, Phys. Rev. E {\bf69}, 056204 (2004)] suggest that the impurity does not contribute significantly to the dynamics of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. The (r,τr,\tau) entropy, which measures the amount of information generated by unit time at different scales τ\tau of time and rr of the observable, is numerically computed by methods of nonlinear time-series analysis using the position and momentum signals of the heavy impurity for various values of the energy density ϵ\epsilon (energy per degree of freedom) of the system and some values of the impurity mass MM. Results obtained from these two time series are compared and discussed.Comment: 7 pages, 5 figures, RevTeX4 PRE format; to be published in Phys. Rev.

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    Rheology of a Suspension of Elastic Particles in a Viscous Shear Flow

    Get PDF
    In this paper we consider a suspension of elastic solid particles in a viscous liquid. The particles are assumed to be neo-Hookean and can undergo finite elastic deformations. A polarization technique, originally developed for analogous problems in linear elasticity, is used to establish a theory for describing the finite-strain, time-dependent response of an ellipsoidal elastic particle in a viscous fluid flow under Stokes flow conditions. A set of coupled, nonlinear, first-order ODEs is obtained for the evolution of the uniform stress fields in the particle, as well as for the shape and orientation of the particle, which can in turn be used to characterize the rheology of a dilute suspension of elastic particles in a shear flow. When applied to a suspension of cylindrical particles with initially circular cross-section, the theory confirms the existence of steady-state solutions, which can be given simple analytical expressions. The two-dimensional, steady-state solutions for the particle shape and orientation, as well as for the effective viscosity and normal stress differences in the suspension, are in excellent agreement with direct numerical simulations of multiple-particle dispersions in a shear flow obtained by using an arbitrary Lagrangian–Eulerian (ALE) finite element method (FEM) solver. The corresponding solutions for the evolution of the microstructure and the rheological properties of suspensions of initially spherical (three-dimensional) particles in a simple shear flow are also obtained, and compared with the results of Roscoe (J. Fluid Mech., vol. 28, 1967, pp. 273–293) in the steady-state regime. Interestingly, the results show that sufficiently soft elastic particles can be used to reduce the effective viscosity of the suspension (relative to that of the pure fluid)

    Shape Dynamics and Rheology of Soft Elastic Particles in a Shear Flow

    Get PDF
    The shape dynamics of soft, elastic particles in an unbounded simple shear flow is investigated theoretically under Stokes flow conditions. Three types of motion—- steady-state, trembling, and tumbling—- are predicted, depending on the shear rate, elastic shear modulus, and initial particle shape. The steady-state motion is found to be always stable. In addition, the existence of a trembling regime is documented for the first time in nonvesicle systems, and a complete phase diagram is developed. The rheological properties of dilute suspensions of such soft particles generally exhibit shear-thinning behavior and can even display negative intrinsic viscosity for sufficiently soft particles

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+κt=1+\kappa, where κ\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.
    corecore